amath  1.8.5
Simple command line calculator
acosh.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2014-2018 Carsten Sonne Larsen <cs@innolan.net>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Project homepage:
26  * https://amath.innolan.net
27  *
28  * The original source code can be obtained from:
29  * http://www.netlib.org/fdlibm/e_acosh.c
30  *
31  * =================================================================
32  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
33  *
34  * Developed at SunSoft, a Sun Microsystems, Inc. business.
35  * Permission to use, copy, modify, and distribute this
36  * software is freely granted, provided that this notice
37  * is preserved.
38  * =================================================================
39  */
40 
41 /**
42  * @file acosh.c
43  * @brief Inverse hyperbolic cosine function
44  */
45 
46 #include "prim.h"
47 
48 static const double
49  one = 1.0,
50  ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
51 
52 /**
53  * @brief Inverse hyperbolic cosine function
54  * @details
55  * <pre>
56  * Based on
57  * acosh(x) = log [ x + sqrt(x*x-1) ]
58  *
59  * we have
60  * acosh(x) = log(x)+ln2, if x is large; else
61  * acosh(x) = log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
62  * acosh(x) = log1p(t+sqrt(2.0*t+t*t)); where t=x-1
63  *
64  * Special cases
65  * acosh(x) is NaN if x<1
66  * acosh(NaN) is NaN
67  * </pre>
68  */
69 double acosh(double x)
70 {
71  double t;
72  int32_t hx, lx;
73 
74  GET_HIGH_WORD(hx, x);
75  GET_LOW_WORD(lx, x);
76 
77  // x < 1
78  if (hx < 0x3FF00000)
79  {
80  return NAN;
81  }
82 
83  // x > 2**28
84  if (hx >= 0x41B00000)
85  {
86  // x is inf or NaN
87  if (hx >= 0x7FF00000)
88  {
89  return NAN;
90  }
91 
92  // acosh(huge) = log(2x)
93  return log(x) + ln2;
94  }
95 
96  // acosh(1) = 0
97  if (((hx - 0x3FF00000) | lx) == 0)
98  {
99  return 0.0;
100  }
101 
102  // 2**28 > x > 2
103  if (hx > 0x40000000)
104  {
105  t = x * x;
106  return log(2.0 * x - one / (x + sqrt(t - one)));
107  }
108 
109  // 1 < x < 2
110  t = x - one;
111  return log1p(t + sqrt(2.0 * t + t * t));
112 }
double log(double x)
Natural logarithm function (base e)
Definition: log.c:109
double sqrt(double x)
Square root function.
Definition: sqrt.c:119
static const double one
Definition: acosh.c:49
#define GET_HIGH_WORD(i, d)
Get the more significant 32 bit int from a double.
Definition: prim.h:167
double log1p(double x)
Definition: log1p.c:122
#define GET_LOW_WORD(i, d)
Get the less significant 32 bit int from a double.
Definition: prim.h:177
#define NAN
Definition: mathr.h:53
double acosh(double x)
Inverse hyperbolic cosine function.
Definition: acosh.c:69
static const double ln2
Definition: acosh.c:50