amath  1.8.5
Simple command line calculator
kcos.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2014-2018 Carsten Sonne Larsen <cs@innolan.net>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Project homepage:
26  * https://amath.innolan.net
27  *
28  * The original source code can be obtained from:
29  * http://www.netlib.org/fdlibm/k_cos.c
30  *
31  * =================================================================
32  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
33  *
34  * Developed at SunSoft, a Sun Microsystems, Inc. business.
35  * Permission to use, copy, modify, and distribute this
36  * software is freely granted, provided that this notice
37  * is preserved.
38  * =================================================================
39  */
40 
41 /**
42  * @file kcos.c
43  * @brief Kernel cosine function
44  */
45 
46 #include "prim.h"
47 
48 static const double
49  one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
50  C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
51  C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
52  C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
53  C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
54  C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
55  C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
56 
57 /**
58  * @brief Kernel cosine function
59  * @details
60  * <pre>
61  * Kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
62  * Input x is assumed to be bounded by ~pi/4 in magnitude.
63  * Input y is the tail of x.
64  *
65  * Algorithm
66  * 1. Since cos(-x) = cos(x), we need only to consider positive x.
67  * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
68  * 3. cos(x) is approximated by a polynomial of degree 14 on
69  * [0,pi/4]
70  * 4 14
71  * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
72  * where the Remes error is
73  *
74  * | 2 4 6 8 10 12 14 | -58
75  * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
76  * | |
77  *
78  * 4 6 8 10 12 14
79  * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
80  * cos(x) = 1 - x*x/2 + r
81  * since cos(x+y) ~ cos(x) - sin(x)*y
82  * ~ cos(x) - x*y,
83  * a correction term is necessary in cos(x) and hence
84  * cos(x+y) = 1 - (x*x/2 - (r - x*y))
85  * For better accuracy when x > 0.3, let qx = |x|/4 with
86  * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
87  * Then
88  * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
89  * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
90  * magnitude of the latter is at least a quarter of x*x/2,
91  * thus, reducing the rounding error in the subtraction.
92  * </pre>
93  */
94 double __kernel_cos(double x, double y)
95 {
96  double a, hz, z, r, qx;
97  int32_t ix;
98 
99  GET_HIGH_WORD(ix, x);
100  ix &= 0x7FFFFFFF;
101 
102  // if x < 2**27
103  if (ix < 0x3E400000)
104  {
105  // generate inexact
106  if ((int)x == 0)
107  {
108  return one;
109  }
110  }
111 
112  z = x * x;
113  r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
114 
115  // |x| < 0.3
116  if (ix < 0x3FD33333)
117  {
118  return one - (0.5 * z - (z * r - x * y));
119  }
120 
121  // x > 0.78125
122  if (ix > 0x3FE90000)
123  {
124  qx = 0.28125;
125  }
126  else
127  {
128  INSERT_WORDS(qx, ix - 0x00200000, 0);
129  }
130 
131  hz = 0.5 * z - qx;
132  a = one - qx;
133  return a - (hz - (z * r - x * y));
134 }
#define INSERT_WORDS(d, ix0, ix1)
Set a double from two 32 bit ints.
Definition: prim.h:187
#define GET_HIGH_WORD(i, d)
Get the more significant 32 bit int from a double.
Definition: prim.h:167
static const double C1
Definition: kcos.c:50
static const double C5
Definition: kcos.c:54
static const double C6
Definition: kcos.c:55
double __kernel_cos(double x, double y)
Kernel cosine function.
Definition: kcos.c:94
static const double C3
Definition: kcos.c:52
static const double one
Definition: kcos.c:49
static const double C4
Definition: kcos.c:53
static const double C2
Definition: kcos.c:51